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1. INTRODUCTION

We examine here a method for reconstructing an x-ray attenuation function from
measurements of its integrals in the case where the projection data is sparse. In practice,
data from as few as 5 to 20 projections, with perhaps only 25 measurements per projection,
may be all that is available. This is the case, for example, in industrial nondestructive
testing, where the object whose density cross-section we are attempting to determine is in
a rapid state of flux. In this event, there is very little time available in which to gather
dats. Further, what little data there is available is almost certainly degraded by noise and
poesibly blurring due to the motion of the object.

One should note that the standard reconstruction algorithms currently in use in most
medical CAT scanners utilizse 180 views (or projection angles) and yield very poor resolution

when the number of views is substantially reduced!. One approach which has proven useful
when the available projection data is sparse is the maximum entropy algorithm MENT of

Minerbo?. In this method, one attempts to compute the attenuation function having maximum
entropy (intuitively, ome might say, the [function yielding the picture with the Ileast

information contentz’a) and which is also consistent with the measurements. One of the
difficulties with this approach is that Minerbo looks for a solution in the class of functions

continuous in the scanning region, while it has been shown by Klaus and Smith? that the
solution of this problem must be piecewise constant throughout the scanning region. Also, the
MENT algorithm as now implemented does not take advantage of a priori information known
about the object being scanned. We address both of these problems in the current work.
The most asignificant difference, however between MENT and the current work is that
MENT requires that the density of the object being scanned tends to sero as the edges of
the scanning region are approached. If this requirement is not met, MENT may produce a
completely unrecognisable image. Naturally, the only way to guarantee that such an "edge
condition” is satisfied in practice, is (0 require minimum x-ray source-to-phantom and
phantom-to-detector distances, where the density of the surrounding medium is known a
priori. This condition, then imposes a restriction on the maximum size of an object to be
scanned by a given device, a sise smaller than that which the machinery itself would
otherwise allow. The current method removes this restriction entirely. We have included an
example of a reconstructed density profile with nonsero density near the edge of the
scanning region, obtained by the new method. As a comparison, we include the MENT
reconstruction obtained using the same data.

lek. Zoltani, K.J. White and R.P. Kruger, "Result of Feasibility Study on Computer Assisted
Tomography for Ballistic Applications®, ARBRL-TR-02513, Aberdeen Proving Ground,
Maryland, ADA 133 214, August, 1983.

2. Minerbo, "MENT: A Maximum Entropy Algorithm for Reconstructing a Source from
Projection Data®, Comp. Graph. and Image Proc., Vol. 10, pp.48-68, 1979

3RD. Levine and M Tribus, The Maximum Entropy Formalism, MIT Piess, Cambridge. 1978

M Klaus and RT Smith. "A Hilbert Space Approach to Maximum Entropy Reconstruction”.
Math. Meth. in the Appl. Sci., to appear
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In (4} Klaus and Smith demonstrated that by subtracting the entropy from a
penalty term consisting of the residual error in matching the measurements and then
minimising this augmented cost functional over a weakly compact set, one obtains a

well-posed optimisation problem in L2 +(D), where D is the scanning region and L2 +(D) is
the space of non-negative square integrable functions on D. That is, there exists a unique
solution of the problem and the solution depends continuously (weakly in L2 +(D) ) on the

measured data. It was also shown that the solution of this problem, for the special case of
the weakly compact set which we consider here, must be piecewise constant. Our problem is

set in the larger function class Lz(D), rather than in the class of piecewise constant
functions, however, since the geometry of the sets on which the solution is constant is so
complicated as to make trying to find the exact solution of the optimization problem
prohibitive.

In the present work, a solution of the optimization problem is sought over a finite
dimensional subspace of L2(D). Thus, the infinite-~dimensional optimization problem is reduced

to one over R®. A simple discretisation of D is made and a space of finite elements is
defined on this grid. We restrict ourselves here to basis functions which are piecewise
constant or products of piecewise linear functions in each variable. It is shown here that as
the finite element mesh sise tends to sero, the sequence of solutions of the finite

dimensional optimisation problems will converge, in L2(D) to the solution of the original,
infinite dimensional problem

The finite dimensional optimisation problems are somewhat large in practice (usually
at least 300 to 1,000 variables, for minimal resolution) but they are rclatively simple in
form. Although the cost functional is quite nonlinear, the constraints are very simple bound
constraints.

For our numerical experiments, we have used the MINOS nonlinear optimization

package of Stanford's Systems Optimisation Labont.orys'o. The current version of MINOS
uses a reduced gradient scheme together with a quasi-Newton method.

Il. THE OPTIMIZATION PROBLEM

We consider the problem of reconstructing an x-ray attenuation function in two
dimensions from measurements of its integrals. The x-rays are assumed to be collimated so
that a parallel beam scanning geometry is obtained. Assume that J x-ray sources

Sp, Gill, W. Murray and M. Wright, Practical Optimizgtion, Academic Press, London, 1981.

SB.A. Murtaugh and MA. Saunders, "Large-Scale Linearly Constrained Optimization”, Math.
Prog., Vol. 14, pp.41-72, 1978,




are arranged on a circle centered at the origin and containing the region to be scanned, D C
R3, Suppose that the center lines of the x-ray projections make angles ap i=1,.J,

with the positive x-axis. We assume that we have available measurements of the x-ray
attenuation along strips Ain’ m = 1,.M(j), which are parallel to the center line of the

x-ray projection from the jt'h source, for each j = 1,.J. The strips are such that for each

N j - lr"fll
M(j)

The eptropy of f, for f € L2(D), is defined to be

o - - [ J [tx)] mf |ty A ax gy, (2.1)
. |

where A is the area of D.
Let fo be the actual x-ray attenuation function. We will assume that there is

measured projection data Gjn available in the form

Gy = Silfg) : = I I fo(xy) dx dy |, (2.2)
Ain
me=1.Mj;j=1,.J

We add to the entropy a penalty term corresponding to the residual error in meeting
the measurements (2.2). Define the functional

o
2
G = -a) + v B (G- S0 P (2.3)
J.,m
where v > 0 is the penalty parameter.
The object then, is to minimize (2.3), subject to some appropriate constraints on f.
This should yield the picture with the least information content which matches the measured 8
data to within a specified error. [Note that the residual error is reduced by taking :
]
N
-
9 .
'L
]
(4
b,
A
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larger values of the penalty parameter '17.] We then consider the optimization problem

inf  G(f) , (2.4)
f €x

where ¥ is a weakly (sequentially) compact subset of L? +(D). By weakly (sequentially)

compact, we mean that every sequence in ¥ has a weakly convergent subsequence whose
weak limit lies in X. Of course, {xn} weakly convergent to X means that the sequence of

real numbers {(xn,y)} converges to (x,y) for every y in L2(D), where (') denotes the usual
L2 inner product.In practice, £ will contain a priori information known about the object

being scanned (eg X may specify maximum and minimum densities, information on the
support of the attenuation function, etc.).

In [4], it was shown that the optimization problem (2.4) is well-posed. That is, there
exits a unique solution for any given set of measured data and the solution depends

continuously (weakly in L2(D) ) on the measured data. The key to the proof of
well-posedness hangs on the following two results, which will also be needed to
demonstrate the convergence of our numerical method.

Lemma 1: -

The cost functional G is continuous on L2(D).

Lemma 2:

G is a strictly convex, weakly lower semicontinuous functional on L2+(D).By weakly

lower semicontinuous, we mean that if {fn} converges weakly to f € L2+(D), then

G(f) € lim G(f,).

n — oo

For the proof of Lemmas 1 and 2, the interested reader is referred to [4].

It is also shown in [4], that the solution of (2.4) for the special case of L
considered here is constant on each cell of D, where by a cell, one means the interior of a
maximal region which is not crossed by any of the strip boundaries. This characterization of
the solution, while of theoretical interest, is of little help in actually solving the
optimization problem, because of the very complicated geometry involved. Rather than using

this characterization of the solution, then, we consider a method of solution utilizing the
L2(D) structure.

7R. Fletcher, Practica] Methods of Optimization, Vol. 2, John Wiley, New York, 1980.

10




One should note that, due to the severe nonlinearity of the object function G(f), it
is rather difficult to approach (2.4) as an infinite dimensional problem using the calculus of

{v variations. We therefore approach the problem via the Rits method®. For each h > 0, let

8P denote a finite dimensional subspace of Lz(D), satisfying the following approximation
property : Given ¢ > 0, one can choose h sufficiently small so that the best

approximation fh to f out of Sh (ie. the projection of f onto Sh) satisfies
h
|| £-¢ | |L2(D) < e (2.5)

Consider now solving the optimization problem (2.4) over Sh, that is,

inf o(f) , (2.6)
t € nS

for a sequence of values of h, tending to zero. We can now prove the following convergence
result.

Theorem:

Let { sh | h > 0 } be a family of finite dimensional subspaces of L2(D) satisfying
the above approximation property. Then for

L ]
wy = Gfy) = iaf GO,
f € Tns

* * *
B converges to pu and f, converges weakly ( in L2(D) )} to f*, as h tends to O,

where

* *®
p =G(f)=inf G(f)
fex

Proof:

Since G is weakly lower semicontinuous and strictly convex on L2+(D) and I is
*®
weakly compact, there must exist a unique minimizer, fh of Gover £ N Sh, for each h >

0. Let fh denote the best approximation to f‘ out of Sh. Since G is continuous on L2(D)

(Lemma 1) and the family of subspaces S satisfies the above approximation property, one
may, given ¢ > 0, choose h > 0 sufficiently small so that

8I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall, Englewood Cliffs, New
Jersey, 1963. .

11
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art) < 6 + e

Note that
* * &
# =G(f )= inf G(f) <  inf G(f) = G(fh ) (2.8)
f € X f € £nS

However, since fh € Sh,

G(f,) =  inf G(f) s G(h.
f € TS

From (2.7) and (2.8), it then follows that

* h %
I SG(fh)SG(f) < Gf)+€¢ = pu + ¢,

* *®
and hence, G(fh ) converges to s, as h tends to 0. Note that this alone is not sufficient

* *
to say that f; converges to f in L2 +(D). Since one is interested in approximating the

attenuation function and not just its associated entropy, this last question is crucial. This
can be resolved as follows.

Let {hn} be a sequence of positive real numbers tending to 0 and let

‘ .
p, = G(f ) = inf n G(f).
f € ens ™
*
Then { f  } is a minimizing sequence for G(f) over L, from the preceding. Since T is

* *®
weakly (sequentially) compact, { f } must have a weakly convergent subsequence { f }

"k
whose weak limit f lies in L. It follows by the weak lower semicontinuity of G that

') < lim G(fnk*) - =a)

—_— QOO

*k L]
whence f = f , since G has a unique minimizer in X. Lastly, since L is weakly compact,

* *
and { f_} C L, every subsequence of { f =} has, in turn, a subsequence converging

*
weakly to f‘. Thus, { fn‘ } must itself converge weakly to f .

RN VRN G VTN GRS IV R eV s



One can see from the theorem that, by solving the optimization problem (2.8) for a

finite dimensional subspace Sh of L2(D), we do indeed obtain an approximation to the
solution of the infinite dimensional problem (2.4). In the next section, we give examples of
two finite element spaces in which we have solved (2.8). We have included examples of
images reconstructed with this method using extremely sparse data.

III. FINITE ELEMENT APPROXIMATION.

In this section, we show how to implement the method described in the last section

by using a space of finite elements as the approximating subspace of L2(D). We give several
examples of simple finite element spaces and reconstruct several images using one of these
spaces.

First, superimpose a fixed rectangular mesh on D = [-1,1} x [-1,1], with uniform
mesh size, h = 1/n in both the x and y directions, for simplicity. Consider using products

of piecewise linear functions in x and y as the finite element space sh A basis for SD is

given by
Sr(xy) = ¢(x) ¢(y) , k = 1,..(20+1)%,
where
1 = [(k=1)-(k-1) mod (2n+1)}/(2n+1) - n,
i =k - (l+n)(2n+1) - n - 1
and

0 , t £ (j-1)h, ¢ 2 (j+1)h
#{0) = { [t-(i-1)h]/b , (i-1)h S ¢ < jh
[(j+1)h-t]/h , jh £ t < (j+1)h.
It is very reasonable to expect that in practice, one should know a priori the

minimum and maximum densities of the object being examined. Therfore, we have defined a
simple constraint set by

r = {fe L2(D)|0 <as{<b< e, ae and =0 ae. in R2\D}

The attenuation function f is then approximated in sh by

N
X, = z C W
f(x.y) %k ¢ (x.y)

where N = (2n+1)2 and the coefficients ¢ are chosen as the solution of the finite

dimensional optimization problem

13 !
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N
LAY G(, 2 4 #lxn) (3.1)

subject to

N
0 < a < kEI ) ¢k(x,y) < b (3.2)

With the simple choice of the finite element space Sh and due to the form of G,
(3.1) - (3.2) reduces to

N
inf {-n( 2 ck¢k(x,y))+7 'Z [Gjm
c € RN k=1 j,m
N
< 2
- k:l Ck Sjm( $1(xy) ) I° } (3.3)
subject to
0 < a £ cx < b, k=12,.N. (3.4)
The finite dimensional optimization problem (3.3) - (3.4) can be solved numerically,

for sufficiently small values of N, using existing optimization software packages. [For our

examples, we have used the MINOS packages.] Note that this can be done only if one has a
simple method of computing values of the object function for each updated value of CqremCN

Because of the form of (3.3), one needs to compute the values of Sjm( ¢k(x,y) )} for each

j m and k only once for given projection and discretization geometries. These values can
then be stored in a (somewhat large) disk file and simply read back each time new values
of CraCyy are computed (ie. in each pass of the optimization scheme). We have devised an

algorithm which can compute the integrals Sjm( d)k(x,y) ) exactly for any given projection

and discretization geometries. It is then a simple matter to compute the residual error

N
< < 2
Zm PGm 72 Sl A ) 1 (3:5)

at each pass of the optimization scheme.

Note that due to the nonlinearity of the entropy term, we need to recompute

N
<
o1 (x,
7 2 o dylxn)

14
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for each new set of values ¢yrCN: Although the geometry is simple, the integrands are

rather complicated. One can write the entropy as an iterated integral, the first of which is
evaluated explicitly. The second integration is then performed numerically, each time a new
set of values of CymCN is computed. In the examples, we have used an adaptive quadrature

routine for this.

The question of how to determine an optimal value of the penalty parameter + is
as yet unresolved. In practice, 4+ must be sufficiently large so that the residual error in
meeting the measurements (3.5) is small. At the same time, ¥ must not be so large that the
penalty term completely swamps out the entropy. Computational experience has been our
only guide thus far, for determining an acceptable value of 4. More work remains to be
done in this direction.

As yet, nothing specific has been said about how to choose the mesh size h. In the
theorem of the last section, we have seen that as h tends to 0, the solution of (3.3) -
(3.4) tends to that of the infinite dimensional problem (2.4). In practice, however, one must
choose a value of h which will yield a reasonable resolution and yet for which the computer
time is not excessive. There is of course, also an important restriction placed on h by our
desire to be able to choose v sufficiently large so that the residual error (3.5) is within
tolerances. In order that one might make (3.5) arbitrarily small, it is necessary that the
mesh be sufficiently fine that the system of equations

N
G = 2 6 Sin{ ) ), m = LM 5 = 1,3

is consistent (i.e. there must be at least one solution). For the examples which we have
considered, we have screened prospective values of the mesh size by numerically checking
the system of measurement equations for consistency. We then increased the value of the
penalty parameter until a minimizer with an acceptable residual error was found.

As an illustration of the reconstruction algorithm presented above, we consider a
phantom consisting of three identical cylinders, all of density 1, placed at arbitrary
positions within the scanning region, where the background density in the scanning region is
.1 (see Figure 1 for a cross-sectional view). Note that one of the cylinders is rather close
to the edge of the target grid. For the reconstruction, the phantom is set within a square
grid 30 unit cells on a side.

The computer code GOLEM? was used to produce the x-ray absorption data from
the phantom, mathematically. Data was produced from 25 detectors for each of 5 projection
angles, arranged uniformly ar ound the target. The reconstruction grid spans the width of
the 25 detectors, as seen in Figure 1. The 31x31 grid is used as the finite element grid
and in Figures 2 and 3 can be seen inside a 51x51 grid, where points outside the 31x31
grid are given density zero.

9MD. Altschuler, T. Chang and A. Chu, "Rapid Computer Generation of 3-D Phantoms and
Their Cone~Beam X-ray Projections”, Medical Image Processing Group Technical Report
MIPG16, State University of New York at Buffalo, Nov. 1978.




SAMPLE PROBLEM

XC YC RAD DENSITY

BACKGROUNO 0.0 0.0 15.0 0.1
1 -7.0-7.0 3.6 1.0
2 0.0 10.7 3.6 1.0
J 7.2 0.0 3.6 1.0

Figure 1. Cross~-Sectional View of Phantom

In Figure 2, we give the reconstructed density plot, using our new method, for the
phantom in Figure 1. Notice that the three cylinders stand out clearly from the background.
In Figure 3, we give the MENT reconstruction using the same data as that used for Figure
2. Of course, this is completely unrecognizable, due to the large mass near the edge of the
target grid.

A more extensive collection of examples is given in [10] More of the technical
details of the reconstruction are given there, along with a more detailed comparison with
MENT.
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10p 1. Smith, C.K. Zoltani and G. Klem, "Reconstruction of Tomographic Images from Sparse
Data by a New Finite Element Maximum Entropy Approach”, BRL Report, in preparation.
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Figure 2.Reconstructed Density Plot using New Method

Figure 3. Reconstructed Density Plot Using MENT

17
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